
Segregation without Computation
Jordan Burklund

Worcester Polytechnic Institute
Worcester, MA

jsburklund@wpi.edu

Michael Giancola
Worcester Polytechnic Institute

Worcester, MA
mjgiancola@wpi.edu

Peter Mitrano
Worcester Polytechnic Institute

Worcester, MA
pdmitrano@wpi.edu

Abstract—In this paper, we demonstrate that memoryless
computeless robots are capable of n-class segregation. We evolve
controllers for this behavior with a genetic algorithm and
perform a grid search over all parameters to understand the
full parameter space. We find that robust segregation is possible,
although not guaranteed. Instead, we prove that aggregation of
kin robots is guaranteed when some reasonable conditions are
met.

Index Terms—swarm robotics, robot aggregation, robot segre-
gation

I. INTRODUCTION AND RELATED WORK

Many prior methods have demonstrated the ability to aggre-
gate robots and objects in a distributed way, and some have
shown the ability to perform such tasks with limited com-
putation and sensing capabilities. Decentralized aggregation
is frequently posed as a precursor to other swarm behaviors
such as sorting, self-assembly, or coordinated motion [1] [2].
Segregation is a natural extension of aggregation, and so we
also desire algorithms for segregating robots into different
clusters. In order to make this robust to individual failures and
simple to implement, we would also like to achieve segregation
with no communication between robots, no complex sensors,
no leaders or beacons, and no environmental cues.

In nature, we find many examples of aggregation and
segregation. Segregation occurs in cells during embryogenesis,
and segregation of objects can be found in ants who sort their
brood [3]. Furthermore, segregation is something humans do
very quickly, and we can do so almost on reaction rather than
carefully planned motion. These examples motivate the study
of simple controllers for segregation.

A. Aggregation and Segregation

Robot aggregation is defined as having all robots in the
swarm collect at a particular location in a distributed manner.
Many swarm aggregation policies require robots to compute
bearing and distance to other robots, to sense gradients in the
environment, or to otherwise communicate information. How-
ever, implementing these communication systems is difficult
in practice, so methods that do not require communication or
complex sensing are desirable. In [4], the authors propose a
new class of policies that require no computation.

The work of [5] does not restrict itself to a computeless
or memoryless solution. Instead they develop an aggregation
algorithm which enables robots to respond to guidance com-
mands – i.e., a human using hand gestures to indicate which

direction the swarm should move. They show that swarms
running their algorithm are able to follow guidance commands
and stay aggregated without colliding. A simpler controller
is used in [6], where robots are equipped with IR distance
sensors surrounding the robot, 4 microphones, and an omni-
directional speaker. The policy is a linear combination of the
IR sensor values and the intensity values of the microphones.
The authors show that a genetic algorithm is able to find
weights for the policy such that robots aggregate together.
In [7], the authors present a robot aggregation model with
very limited sensing and no memory, but allows the robots to
perform computations to determine their next position. They
prove that their algorithm is correct in theory, then run the
algorithm in simulation.

Finally, [4] considers a binary sensor that maps directly to
wheel velocities. The authors demonstrate extremely robust
aggregation despite these limitations, and they also prove
formally that aggregation is guaranteed and find theoretical
bounds on aggregation time in simple situations. Similarly,
the authors of [8] perform object aggregation with the same
restrictions on sensing and control.

Segregation of robots has received little attention in swarm
robotics, however many researchers have focused on sorting of
objects [9] [10] [11] [12]. The study in [3] shares our objective,
however they assume that each class has the same number of
robots and that each robot knows the position of all other
robots. In contrast, we adhere to the memoryless computeless
controller architecture with a simple ternary sensor. [13] also
explores segregation robots based on local interactions inspired
by gravity, however they require a centralized broadcast or a
consensus algorithm to agree on the source or direction of
gravity.

B. Robots That Do Not Compute

The memoryless and computeless controllers originally
proposed by [4] has been extended to other tasks and been
modified in many ways by other researchers.

In [14], the authors propose an aggregation policy roughly
based on observations of bees clustering in an optimal tem-
perature location. In their method, robots are only able to
distinguish between collisions between another robot or a wall,
can only sense the intensity of a light source when they have
collided, and do not communicate information. Although the
robots have limited sensing and communication capabilities,
the authors show that robots can aggregate to an optimal light

Algorithm 1 Controller Design
if I = 0 then

set wheel speeds to vl0 , vr0
else if I = 1 then

set wheel speeds to vl1 , vr1
else

set wheel speeds to vl2 , vr2
end if

intensity location, and that the time to converge to the optimal
location improves with increasing number of robots in the
environment.

Robots that do not compute and are memoryless have
also been shown to aggregate around a specific object, circle
in a ring around an object, and forage for obstacles [15].
In this work, the authors show one can construct simple
cost functions to guide the evolution of controllers to do
new, yet interesting tasks. However, they also report that in
attempting to evolve a controller to rendezvous the robots
around an object, they accidentally and consistently evolved
a policy where the robots circled around the target object.
This demonstrates that designing a cost function can be hard
or unreliable. They achieved rendezvous by initializing the
policy at generation zero to the policy found in [4] for simple
aggregation.

II. METHODOLOGY

A. Problem Formulation

We consider a collection of differential drive robots all exe-
cuting the same controller in a homogeneous, two dimensional,
obstacle free environment. The robots are equipped with a
single forward facing line of sight sensor which can distinguish
between the presence of a kin robot, a non-kin robot, and
nothing. This sensor is assumed to have infinite length (we
consider non-infinite length in Section V-E). We assign I = 0
to the state when no robot is seen, I = 1 to the detection of
a kin robot, and I = 2 to the detection of a non-kin robot.
We allow for any number of classes, but the robots need not
distinguish between different non-kin classes. They need only
to detect if a robot is of the same class or not. The objective
is to segregate robots into clusters, ideally such that all the
robots of the same class are packed into one cluster with no
non-kin robots.

The controllers we use in our experiments are of the same
form as in [4]. They simply map each of the three sensor
values to a set of wheel speeds. Pseudo-code for the controller
is shown in Algorithm 1. This controller has six parameters:

[vl0 , vr0 , vl1 , vr1 , vl2 , vr2]

Keeping with the form used in [4], we let these parameters
range from -1 to 1. In simulation, we then scale this parameter
to range from −20 cm s−1 to 20 cm s−1.

B. Simulation Environment

We use the ARGoS simulation environment to search for
controller parameters and evaluate them, which has the ad-
vantage of allowing us to run trials much faster than on real
robots [16]. In our simulations, we use a range and bearing
sensor to implement the theoretical line of sight sensor. In
our analysis, we describe the sensor as infinitely thin, but in
practice it must have some small finite angle. We explore the
performance effect of various beam angles in Section V-D. We
note here the detail that we consider robots to be connected
in a cluster if the gap between them is 5 cm or less. We now
describe two approaches for finding these parameters, genetic
algorithms and grid search.

C. Evolving Segregation

In order to quickly search for parameters to achieve segre-
gation, we use a simple genetic algorithm to evolve controller
parameters. The genetic algorithm we used is unmodified from
the example MPGA code provided with the ARGoS simulator.
The mutation strategy is simply to mutate each of these 6
parameters with some probability p (0.05 in our experiments).
If a parameter is selected to be mutated, a uniformly random
number from -1 to 1 is picked for the new value. Selection
is performed by picking the two lowest cost individuals, and
the next population is formed by crossing the parameters of
these two individuals. The original two parents are always kept
in the population so that the current lowest cost individual is
never removed until a lower cost genome is discovered.

D. Cost Functions

As with any optimization algorithm, it is important to have
a cost function that accurately assigns cost to behaviors. We
explore two different cost functions, and we find that one of
them did not behave as we expected (see Section V-A). The
first is the cluster metric used by [4], which is the proportion of
the number of robots in the largest cluster to the total number
of robots. We will apply this for each class of robots and sum
up the cluster-metric cost for each class to get the total cost.
The negative sign is present because the cluster metric is 0
when no robots are connected and 1 when all robots in a class
are connected, so the negative sign assigns more connections
a lower cost. This was ultimately the cost function we used in
grid search and all following experiments.

ctotal =
1

n

n∑
classes

T−1∑
t=0

−tc(t)gauci

We also tried a new cost function to address some concerns
with the cluster metric. The cluster metric described above is
problematic because it considers a straight line of robots to
be one cluster. In some scenarios, we care about how tightly
the swarm is packed in its clusters. This new metric uses the
centroids of the robots in each class. We borrow the dispersion
metric u(t) from [4], which essentially computes the sum of

distances from each robot to the centroid, but in our case
we apply this to each class of robots. Consider u(t)i to be
the dispersion of a particular class i at time t. Given all the
centroids p̄(t)i for each class i, we call the centroid of all of
these centroids P̄ (t). We call this the centroid-of-centroids cost
function, and it can be defined formally as follows:

cintra =

n∑
i=1

u
(t)
i

cinter = − 1

4r2

n∑
i=1

‖p̄(t)i − P̄
(t)
i ‖

2

ctotal =

T−1∑
t=0

t(cintra + cinter)

E. Grid Search

In order to exhaustively search the space of possible con-
trollers, we conduct a grid search of the 6-dimensional param-
eter space. Due to limited computational resources, we were
only able to search with a resolution of 7 values per parameter,
which means in total we evaluated 76 = 117649 parameters.
For each parameter, we ran 1 trial in 36 different initial config-
urations, with 180 seconds for each simulation. These config-
urations consisted of uniformly random placement, clusters,
and lines of robots distributed throughout the environment.
We chose to include some structure configurations (clusters
and lines) because we discovered that they varied significantly
in performance from uniform random configurations, and by
explicitly evaluating on structure configurations we can speak
more confidently about the ability of the controller to succeed
in any configuration. Otherwise, we would need to have
far more trials with uniformly random robot placement to
make the same claims. We were able to parallelize across
the 36 configurations and run at 75x real time, so it took
approximately 4 days to evaluate all the controllers.

Because the search space is 6 dimensional, we choose to
visualize it by plotting every pair of parameters against each
other. For example, we consider how the cost changes as vl0
and vr0 change. We note that these graphs, shown in Figure
1, show very similar patterns to the same plots presented by
[4]. As an example of reading these plots, we can tell from
the plot of parameters 2 and 3 (I = 1) that there were no
good controllers where the left and right wheel speeds were
equal and negative (dark squares in the upper left), and that
the best controllers had slightly unequal values close to 1
(lightest squares in the bottom left). These plots also visualize
how there are some sharp discontinuities where performance
changes dramatically.

III. THE EMERGENT BEHAVIOR

After running 10 generations with 10 genomes per gen-
eration, the lowest cost controller we found was [0.5, -0.5,
-0.2, 0.6, 0.6, 0.2]. Similarly, after running the grid search the
best controller was [1, -2/3, 1/3, 1, 1, 0]. For both of these

Fig. 1. Each grid cell shows the cost of the best controller with the x-axis
and y-axis parameters at that given cell value.

Fig. 2. the emergent behavior is rings of kin. These rings sometimes expand
or rotate around the environment.

controllers, the robots policy is to turn away from kin but
turn the opposite way when they see nothing or non-kin. This
cause the kin robots to zig-zag in a line towards their kin,
and when multiple robots execute this behavior the kin robots
form rings. An example of this can be seen below in Figure 2.
Rarely, they also for these shrimp-like shapes which can also
be seen in Figure 2.

The basic description “they form rings” does not do justice
to the complexity of the emergent behavior. We strongly
recommend you view the supplementary videos in Section C
to appreciate it fully. For example, we notice that these rings
expand over time, and that if they are disturbed by a non-
kin robot trying to pass through, they break and reform in a
fascinating snake-like manner.

IV. CONTROLLER ANALYSIS

Now that we have found parameters that achieve what we
consider segregation, we attempt to prove that aggregation
between kin is guaranteed. In all of these proofs we will
consider the controller found via grid search since it is the
best controller.

A. Aggregation with Static Kin

We found from grid search that the parameters [1, -0.6667,
0.3333, 1.0, 1.0, 0.0] best achieve segregation as defined by our
cluster metric cost function. We now analyze this controller
formally. First, we prove that a single isolated robot executing
this controller will aggregate to a static kin robot, or more
importantly, a static cluster of kin robots. This proof is a
variation of the Theorem 5.1 provided in [4]. Consider a robot
situated as shown in Figure 3. The controller dictates that since
a kin robot is seen, I = 1, so vl1 = 0.3333 and vr1 = 1.
This will cause the robot to turn counter-clockwise with some
radius R. Without loss of generality, we define our coordinate
system so that ci = [0, 0] with the robot i facing the +x axis.
For this analysis, we assume that the robot has a fixed, positive
inter wheel distance W , and that the controller is executed in

x

y

ci

pi

R
p′i

R

pj

rj
δ

θ

Fig. 3. The robot will always move closer to its Kin.

finite time steps. Our goal is to show that the distance between
the position of the robot after executing our controller for one
time step p′i and the kin robot pj is less than the distance
between the initial position of the robot pi and the kin robot
pj . Formally, this is expressed by the following relationship:

‖pj − p′i‖ < ‖pj − pi‖ (1)

We emphasize that rj could be the radius of a single kin
robot or the radius of a large cluster of kin robots. With
this coordinate system defined and assumptions stated, we can
define the coordinates of pi, pj , and p′i.

pi =

[
0
−R

]
pj =

[
δ

−(R+ rj)

]
p′i =

[
R sin(θ)
−R cos(θ)

] (2)

We then substitute these variables into our inequality (Equa-
tion 1), and the result is shown in Equation 3. For the full
derivation, see Appendix A. In short, the distance of the robot
to its kin is guaranteed to decrease until a point where the
sensor ray distance δ is not greater than some simple function
of θ and R.

δ > (R+ rj) tan

(
θ

2

)
(3)

We can further calculate exactly how much closer the robot
i will be to robot j after executing the I = 1 state for
one time step. As we show in Appendix B, the change in
distance between the robots is exactly equal to Equation 4.

Fig. 4. The distance between a robot and its kin after each step as it
aggregates. We use W = 0.14, rj = 0.14, ∆t = 0.1. In this example,
aggregation took 60 iterations.

We can use this equation to plot how the distance between the
robots changes over time. We show an example of this for our
simulated robot in Figure 4.

2R
(
(rj +R)(1− cos(θ))− δ sin(θ)

)
(4)

In both of these equations the dependent variables θ and R
are themselves a function of ∆t, the inter wheel diameter W ,
and the wheels speeds of the controller vl1 and vr1 , which are
shown in Equation 5.

θ = ∆tω = ∆t
vr1 − vl1

W
= ∆t

1− (0.3333)

W
=

2∆t

3W

R =
W

2

(
vr1 + vl1
vr1 − vl1

)
=
W

2

(
1 + (0.3333)

1− (0.3333)

)
=
W

4

(5)

Combining 5 with 3 gives us 6, which tells us the conditions
under which aggregation is guaranteed. We emphasize that this
does not mean aggregation to a kin is guaranteed for all values
of ∆t, rj , and W . For example, if ∆t is increased to 1 s then
aggregation is likely not guaranteed, simply because robot i
may have driven so far in its circle that it is further from pj
than before.

δ >

(
W

4
+ rj

)
tan

(
∆t

3W

)
(6)

We can now consider an example with the FootBot robot.
The inner wheel distance for the FootBot is W = 0.14m,
and in our simulations we use a time step of ∆t = 0.1s.
Therefore θ = 0.4761 rad and R = 0.035, and so aggregation
is guaranteed when the following is true.

δ >

(
0.035 + rj

)
tan

0.4761

2

δ > 0.2427rj + 0.0085

(7)

What we would like is for the right hand side of the equation
to always be less than the distance at which the robots are
considered aggregated. In other words, we want aggregation
to be guaranteed until the sensor ray distance is small enough
that aggregation has been achieved. We defined aggregation

as when the distance between the robots d ≤ rj + ri. Since
the sensor ray length δ is always less than that distance, we
can simply show that the right hand side of Equation 6 is
always less than ri + rj . Again we must consider an example
since aggregation cannot be guaranteed in all scenarios, so
going back to our example with the FootBot, we note that
0.2427rj + 0.0085 < rj + ri is always true as long as rj > 0
and ri ≥ 0.0085.

We examined a wide range of possible values for our
parameters ∆t, ri, W , and rj , and we find that as long as
∆t is small (less than 0.25s), then aggregation is guaranteed
for reasonable values of W (less than 0.5m).

V. EXPERIMENTAL RESULTS

A. Evaluating the centroid-of-centroids cost function

When we implemented the centroid-of-centroids style cost
function, we quickly found examples of configurations ranked
in ways we did not like. One example is shown below in Figure
5. The behavior that looks like aggregation was given lower
cost of -8e9, versus the behavior that looks like segregation
was given a cost of -5e9.

Fig. 5. The left picture was given lower cost than the right, which is not
desirable.

B. Scalability Study

In this experiment we investigate how segregation behavior
scales with the number of classes and number of robots in the
environment. We varied the number of classes from 1 to 25
and ran 100 trials of robots randomly distributed. Because our
cost function is independent of the number of classes, we first
considered having 10 robots for each class. However, this also
means that in the trial with 25 classes there are 25 times the
total number of robots than in the 1 class trial. This means
that occlusion of robots is more likely so we are not surprised
to find that cost increases with more classes. The results of
this are plotted in Figure 7. Another scenario is to consider
a fixed number of robots and split them into more and more
classes. We choose 100 robots because we are still able to get
4 robots per class at 25 classes. As you can see in Figure 6, the
cost no longer increases as the number of classes increases.
However, the cost for just a few classes is much higher. This
is expected, because when there are many robots of a single
class, our controller forms very large sparse rings where robots
are too far to be considered clustered.

Ultimately, we can say that our controller scales well to
many classes with few robots, but not well to many robots of
the same class.

Fig. 6. The average cost with 100 robots divided into N classes. More classes
are lower cost partially because kin robots stay close enough to be considered
clusters.

Fig. 7. The average cost with N classes, 10 robots per class. More classes
are higher cost because other robots obstruct your view making it difficult to
find kin.

C. The Effect of Implementation Details of the sensor

So far we have been vague on how exactly we imple-
ment this theoretical line-of-sight sensor. We found in our
experiments that the implementation details have a tremendous
effect on the performance or behavior of the controller. This
is unfortunate because one of the main motivations of the
binary or ternary line of sight sensors is that they can be easily
transferred between real and simulated implementations.

Initially, our method for determining sensor state from our
simulated range-and-bearing sensors was to consider all the
robots within some small angle in front of the robot and
pick the closest one. This is very similar to what you would
presumably get from a real-world camera implementation that
uses colored skirts on each robot and picks the largest blob
as the robot to be detected. This sensor implementation works
well and was used in all our genetic algorithm and grid search
experiments. However, we found later that if instead the robots
always prefer to react to kin over non-kin, you can form larger
rings more quickly and robustly. For example, if there are two
robots within the imagery beam of your sensor and the non-
kin robot is closer, you will ignore it and execute the I = 1

state which will drive you towards the farther away kin robot.
Exploring exactly which of these implementation details have
what effect on cost is left for future work.

D. The Effect of Beam Angle

In practice, there must be some finite beam angle to the the-
oretically line of sight sensor. We ran 100 trials in simulation
with uniformly random initial distributions of 40 robots with
various half beam angles. Figure 8 shows the results, as well
as a diagram showing how we define half beam angle. The
best half beam angle we tested was 15°, and angles smaller or
larger got progressively worse. We found that at lower beam
angles, it was possible for a robot to become stuck in groups
of two or three where the robots spent all their time looking
at each other and not peeking around them to find kin. At
larger angles, we believe the behavior fails because larger
beam angles cause the rings to enlarge faster, which in turn
causes the rings to be so large that they are not considered a
cluster anymore and so the cost rises.

β

Fig. 8. A 15° degree half beam angle is best for segregation. Lower cost is
better.

E. The Effect of Beam Length

We also consider what happens if our theoretically infinite
sensor now has finite range. We use 15° half beam angle
and the same experimental setup as with the beam angle
experiments. Like in [4], we consider the maximum range of
the sensor as the diagonal length of the square in which the
robot are initially distributed. In all our experiments, this box
was 5 m, so we consider a range of 7.07 m to be effectively
unlimited. We report the costs for beam lengths as a fraction of
this maximum range. As you can see in Figure 9, in practice a
beam length of only 35% of the theoretical maximum performs
just as well. Below this, the performance degrades. However,
even a beam length of just 7% of unlimited is more effective
than zero length at segregation. In our experiment watching
many simulations, beam length should also be scaled with the
total number of robots as well as the initial distance between
robots. When the beam length is short, there are many cases
where two rings of kin robots form at different points in the

Fig. 9. Segregation is robust to very finite sensor beam lengths. The blue bar
indicates the worst (highest) attainable cost in which all robots are isolated
from any kin.

environment, and in order for these two rings to join the robots
must have sufficiently long beam length in order to detect each
other.

VI. CONCLUSION

In this paper, we demonstrate that memoryless, computeless
robots are capable of n-class segregation. We use a simple
controller design consisting of a 6-tuple. This controller is
invariant to the number of classes, so any given controller can
work for any number of classes. To quickly find a quality
controller, we evolved one using a basic genetic algorithm,
but we also performed a grid search to make claims about
the full parameter space. We investigated the effect of sensor
implementation details and the number of robots and classes
on performance. We find that robust segregation is possible,
although not guaranteed. Instead, we prove that aggregation
of kin robots is guaranteed when reasonable conditions on
controller frequency and inner wheel distance are met.

REFERENCES

[1] Melvin Gauci, Jianing Chen, Tony J. Dodd, and Roderich Gro\ss.
Evolving Aggregation Behaviors in Multi-Robot Systems with Binary
Sensors. In Distributed Autonomous Robotic Systems, Springer Tracts in
Advanced Robotics, pages 355–367. Springer, Berlin, Heidelberg, 2014.

[2] Marco Dorigo, Vito Trianni, Erol ahin, Roderich Gro, Thomas H.
Labella, Gianluca Baldassarre, Stefano Nolfi, Jean-Louis Deneubourg,
Francesco Mondada, Dario Floreano, and Luca M. Gambardella. Evolv-
ing Self-Organizing Behaviors for a Swarm-Bot. Autonomous Robots,
17(2-3):223–245, September 2004.

[3] V. G. Santos, L. C. A. Pimenta, and L. Chaimowicz. Segregation
of multiple heterogeneous units in a robotic swarm. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages
1112–1117, May 2014.

[4] Melvin Gauci, Jianing Chen, Wei Li, Tony J. Dodd, and Roderich
Gro\ss. Self-organized Aggregation Without Computation. Int. J. Rob.
Res., 33(8):1145–1161, July 2014.

[5] A. Gasparri, A. Priolo, and G. Ulivi. A swarm aggregation algorithm
for multi-robot systems based on local interaction. In 2012 IEEE
International Conference on Control Applications, pages 1497–1502,
October 2012.

[6] E. Bahgeci and E. Sahin. Evolving aggregation behaviors for swarm
robotic systems: a systematic case study. In Proceedings 2005 IEEE
Swarm Intelligence Symposium, 2005. SIS 2005., pages 333–340, June
2005.

[7] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless
point convergence algorithm for mobile robots with limited visibility.
IEEE Transactions on Robotics and Automation, 15(5):818–828, Octo-
ber 1999.

[8] Melvin Gauci, Jianing Chen, Wei Li, Tony J. Dodd, and Roderich Gross.
Clustering Objects with Robots That Do Not Compute. In Proceedings
of the 2014 International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS ’14, pages 421–428, Richland, SC, 2014. Inter-
national Foundation for Autonomous Agents and Multiagent Systems.

[9] A. Vardy. Accelerated Patch Sorting by a Robotic Swarm. In 2012
Ninth Conference on Computer and Robot Vision, pages 314–321, May
2012.

[10] Owen Holland and Steve Hoddell. Collective sorting and segregation in
robots with minimal sensing, 1998.

[11] Tao Wang and Hong Zhang. Collective Sorting with Multiple Robots.
pages 716–720. IEEE, 2004.

[12] Owen Holland and Chris Melhuish. Stigmergy, Self-organization, and
Sorting in Collective Robotics. Artif. Life, 5(2):173–202, April 1999.

[13] R. Gro, S. Magnenat, and F. Mondada. Segregation in swarms of
mobile robots based on the Brazil nut effect. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
4349–4356, October 2009.

[14] Serge Kernbach, Ronald Thenius, Olga Kernbach, and Thomas
Schmickl. Re-embodiment of Honeybee Aggregation Behavior in an
Artificial Micro-Robotic System. Adaptive Behavior, 17(3):237–259,
June 2009.

[15] Matthew Johnson and Daniel Brown. Evolving and Controlling Perime-
ter, Rendezvous, and Foraging Behaviors in a Computation-Free Robot
Swarm. In Proceedings of the 9th EAI International Conference on
Bio-inspired Information and Communications Technologies (Formerly
BIONETICS), BICT’15, pages 311–314, ICST, Brussels, Belgium, Bel-
gium, 2016. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[16] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gi-
anni Di Caro, Frederick Ducatelle, Mauro Birattari, Luca Maria Gam-
bardella, and Marco Dorigo. ARGoS: a Modular, Parallel, Multi-Engine
Simulator for Multi-Robot Systems. Swarm Intelligence, 6(4):271–295,
2012.

APPENDIX

A. Proof of Theorem 1

‖pj − p′i‖ < ‖pj − pi‖√
(pjx − p′ix)2 + (pjy − p′iy)2 <

√
(pjx − pix)2 + (pjy − piy)2

(pjx − p′ix)2 + (pjy − p′iy)2 < (pjx − pix)2 + (pjy − piy)2

(δ −R sin(θ))2 + (−(R+ rj) +R cos(θ))2 < δ2 + (−(R+ rj) +R)2

(δ −R sin(θ))2 + (−(R+ rj) +R cos(θ))2 < δ2 + r2j

δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + (rj +R(1− cos(θ))2 < δ2 + r2j

δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + r2j + 2Rrj(1− cos(θ)) +R2(1− cos(θ))2 < δ2 + r2j

δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + r2j + 2Rrj − 2Rrj cos(θ) +R2(1− cos(θ))2 < δ2 + r2j

δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + r2j + 2Rrj − 2Rrj cos(θ) +R2(1− 2 cos(θ) + cos(θ)2) < δ2 + r2j

δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + r2j + 2Rrj − 2Rrj cos(θ) +R2 − 2R2 cos(θ) +R2 cos(θ)2 < δ2 + r2j

δ2 − 2Rδ sin(θ) +R2(sin(θ)2 + cos(θ)2) + r2j + 2Rrj − 2Rrj cos(θ) +R2 − 2R2 cos(θ) < δ2 + r2j

��δ
2 − 2Rδ sin(θ) + 2R2 +��r

2
j + 2Rrj − 2Rrj cos(θ)− 2R2 cos(θ) <��δ

2 +��r
2
j

−2Rδ sin(θ) + 2R2 + 2Rrj − 2Rrj cos(θ)− 2R2 cos(θ) < 0

−δ sin(θ) +R+ rj − rj cos(θ)−R cos(θ) < 0 assuming R > 0

R+ rj − rj cos(θ)−R cos(θ) < δ sin(θ)

rj(1− cos(θ)) +R(1− cos(θ)) < δ sin(θ)

(rj +R)(1− cos(θ)) < δ sin(θ)

(R+ rj)

(
1− cos(θ)

sin(θ)

)
< δ

(R+ rj) tan
θ

2
< δ

B. Proof of Theorem 2

∆d = d′ − d
= ‖pj − p′i‖ − ‖pj − pi‖

=
√

(pjx − p′ix)2 + (pjy − p′iy)2 −
√

(pjx − pix)2 + (pjy − piy)2

= (pjx − p′ix)2 + (pjy − p′iy)2 − (pjx − pix)2 + (pjy − piy)2

= (δ −R sin(θ))2 + (−(R+ rj) +R cos(θ))2 − δ2 + (−(R+ rj) +R)2

= (δ −R sin(θ))2 + (−(R+ rj) +R cos(θ))2 − δ2 + r2j

= δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + (rj +R(1− cos(θ))2 − δ2 + r2j

= δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + r2j + 2Rrj(1− cos(θ)) +R2(1− cos(θ))2 − δ2 + r2j

= δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + r2j + 2Rrj − 2Rrj cos(θ) +R2(1− cos(θ))2 − δ2 + r2j

= δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + r2j + 2Rrj − 2Rrj cos(θ) +R2(1− 2 cos(θ) + cos(θ)2)− δ2 + r2j

= δ2 − 2Rδ sin(θ) +R2 sin(θ)2 + r2j + 2Rrj − 2Rrj cos(θ) +R2 − 2R2 cos(θ) +R2 cos(θ)2 − δ2 + r2j

= δ2 − 2Rδ sin(θ) +R2(sin(θ)2 + cos(θ)2) + r2j + 2Rrj − 2Rrj cos(θ) +R2 − 2R2 cos(θ)− δ2 + r2j

=��δ
2 − 2Rδ sin(θ) + 2R2 +��r

2
j + 2Rrj − 2Rrj cos(θ)− 2R2 cos(θ)−��δ

2 +��r
2
j

= −2Rδ sin(θ) + 2R2 + 2Rrj − 2Rrj cos(θ)− 2R2 cos(θ)

= 2R
(
− δ sin(θ) +R+ rj − rj cos(θ)−R cos(θ)

)
= 2R

(
(rj +R)(1− cos(θ))− δ sin(θ)

)
C. Supplementary Videos

This YouTube playlist contains videos of the controller found with grid search:
https://goo.gl/z8UAuB

https://www.youtube.com/playlist?list=PL9HqYJ1IkIKVX9EsT5BY9LnBsBPTjc5bB

	Introduction and Related Work
	Aggregation and Segregation
	Robots That Do Not Compute

	Methodology
	Problem Formulation
	Simulation Environment
	Evolving Segregation
	Cost Functions
	Grid Search

	The Emergent Behavior
	Controller Analysis
	Aggregation with Static Kin

	Experimental Results
	Evaluating the centroid-of-centroids cost function
	Scalability Study
	The Effect of Implementation Details of the sensor
	The Effect of Beam Angle
	The Effect of Beam Length

	Conclusion
	References
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Supplementary Videos

